领取MOLI红包

栏目分类

你的位置:LimeWire 中文站 > Suku中文网 > 王华明院士团队:激光定向能量沉积与锻造制备超高强度钛合金组织与力学性能的对比研究|显微|晶粒|热处理|科学家|高温合金

王华明院士团队:激光定向能量沉积与锻造制备超高强度钛合金组织与力学性能的对比研究|显微|晶粒|热处理|科学家|高温合金

发布日期:2025-01-04 16:27    点击次数:83
新一代先进飞机减重和技战术指标要求不断提高对1300MPa级超高强钛合金大型轻量化构件的需求日益提升,然而当前研究主要集中于TC4等中低强度钛合金,激光增材制造超高强钛合金仍面临严峻的强塑性匹配难题。3D打印技术参考注意到,北京航空航天大学王华明院士团队在《中国机械工程学报:增材制造前沿》发表了题为“Microstructure and Mechanical Properties of An Ultrahigh-strength Titanium alloy Ti-4.5Al-5Mo-5V-6Cr-1Nb Prepared Using Laser Directed Energy Deposition and Forging: A Comparative Study”的文章。该文章对比研究了激光定向能量沉积(LDED)和锻造超高强钛合金TB18的组织和力学性能,定量表征了LDED钛合金的微观偏析演化规律,为增材制造高强钛合金性能优化提供指导。1. 论文亮点(1) 分析了LDED超高强钛合金逐层沉积过程中显微组织演化规律。(2) 采用WIRS方法对LDED样品的微观偏析定量表征,发现其微观偏析程度与锻造固溶态相当;(3) 对比研究了LDED与锻件的经相同固溶时效处理后的晶粒、显微组织与室温拉伸性能,分析了组织性能差异的原因,为优化增材制造钛合金强塑性匹配提供指导。2. 结论采用LDED和锻造两种工艺分别制备TB18超高强钛合金Ti–4.5Al–5Mo–5V–6Cr–1Nb (Moeq=14.8) ,对LDED合金进行了500℃/4h, AC去应力退火用于组织性能测试。对LDED和锻造合金进行了870℃/2h, AC + 530℃/4 h, AC固溶时效处理,使用金相显微镜(OM)、扫描电镜(SEM)、电子背散射衍射(EBSD)等方法对热处理前后显微组织进行了表征,并测试了室温拉伸性能,讨论了两种工艺组织性能差异的原因。使用weighted interval rank sort (WIRS) 方法对LDED沉积态不同区域和两种制备方式下合金固溶态的能谱(EDS)数据进行了微观偏析的分析。3. 结果LDEDed TB18钛合金呈柱状晶与近等轴晶交替排列的混合原始β晶粒形貌,移动熔池在快速凝固过程中形成β单相组织,在后续逐层沉积过程中由于循环热影响作用会析出细小弥散分布的α相。Figure 1Grain morphology and microstructure of the three different zones (zones 1, 2, and 3) on the YOZ section of the LDED TB18 titanium alloy without stress-relieved annealingLDED合金原始组织存在一定的偏析,但远低于平衡凝固(溶质再分配洗漱k→1);经历20次热循环后,其偏析程度显著降低;在随后的固溶处理后,其微观偏析与锻造合金经历固溶处理后相当。Figure 2 EDS data processed via WIRS method showing the microsegregation of the alloys: top layer (a), N-1 layer (b), N-20 layer (c), and solution-treated sample (d) of the LDEDed alloy; the wrought alloy (e); (f) segregation of Cr in different locations and samples; (g) fitted solute partition coefficients for the top layer and at equilibrium from the literatureLDED合金经历固溶时效热处理后,其组织为超细网篮,α板条为短棒状;锻造合金经历相同热处理后,组织为多尺度α的网篮组织,其α尺寸较LDED合金略大,且存在大量的晶界魏氏组织αWGB。经历固溶时效热处理后, LDED合金强度与锻造合金强度相当,各向异性降低,但塑性较差。前者变形方式主要为沿晶断裂。锻件良好的强塑性匹配与其多尺度α网篮组织和晶界魏氏组织αWGB有关。优化热处理工艺消除LDED样品的连续晶界α相是提高其强塑性匹配的关键。Figure 3 Microstructure of the aged alloys: (a)–(c) LDEDed alloy and (d)–(f) wrought alloy4. 结论(1) LDEDed TB18合金呈交替柱状和等轴原始β晶粒;沉积态样品由上至下分为三个区域,微观组织由单一的β固溶体转变为α棒状条状组织,αGB析出。在热循环效应和固溶时效处理过程中,晶粒尺寸和形貌保持稳定。(2) LDEDed合金凝固速度快,偏析受到限制。经过20次热循环和固溶处理,偏析基本消除。(3) 经固溶和时效处理后,合金具有超细的篮织组织。然而,锻造合金中的α条是多尺度的,具有粗长α,而LDEDed合金中的α条是均匀的细短棒。此外,变形合金αWGB含量较高。两种合金之间的差异可以归因于KAM图中显示的位错密度。(4) 固溶时效处理后,LDEDed合金的抗拉强度有所提高,但塑性受到限制。断口为沿晶型,晶粒中有浅韧窝。热处理变形合金表现出较好的塑性,但强度与LDEDed处理合金相当。总的来说,本研究分析了激光增材制造超高强钛合金的组织与性能特点,为该类合金的组织优化和强塑性匹配提升提供了理论指导。注:本文内容来自AMF增材制造前沿,转载已获授权。欢迎转发主编微信:2396747576(请注明身份); 硕博千人交流Q群:248112776;网址:www.amreference.com1.2.3.4.